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ABSTRACT
We present an analysis of the effect of a barred gravitational potential on the evolution of several
properties of star clusters, constructing a model of the Galactic bar and evolving a set of direct
N-body simulations of star clusters within the resulting potential. As a first step, we have
confirmed that the Galactic bar has a negligible effect on the evolution of star clusters orbiting
at distances of 4 kpc or greater from the Galactic Centre. We then performed an extensive
orbital analysis in order to identify typical families of planar orbits in the inner regions of a
Milky Way-like barred bulge, and followed the evolution of several structural parameters of
clusters belonging to the four main orbit families that were identified. We have shown that the
orbit type can strongly influence the evolution of total mass, size, core radius, internal velocity
dispersion and escape rates of the simulated clusters. Mass-loss rate and dissolution time of
the clusters are found to be sensitive to the tidal forcing along the different orbits. We describe
a method to predict dissolution times and mass-loss rates of clusters evolving within a barred
potential, following any orbit and with any initial mass. Finally, we applied our method to
predict the dissolution time and to reconstruct the initial mass of two Galactic bulge clusters
with known orbits, namely NGC 6553 and HP 1.

Key words: methods: numerical – Galaxy: bulge – globular clusters: general – Galaxy:
structure.

1 IN T RO D U C T I O N

The evolution of star clusters is dominated by several processes,
which can be grouped into two main categories: internal and ex-
ternal. Internal processes include stellar evolution and two-body
relaxation. External processes are linked to the interaction with
the galactic environment and include adiabatic tidal disruption,
bulge/disc shocks and dynamical friction. Previous studies (Baum-
gardt & Makino 2003; Gieles et al. 2006; Gieles, Athanassoula &
Portegies Zwart 2007; Hurley & Bekki 2008; Lamers, Baumgardt
& Gieles 2010; Küpper et al. 2010; Kruijssen et al. 2011; Gieles,
Heggie & Zhao 2011; Renaud, Gieles & Boily 2011; Berentzen &
Athanassoula 2012; Rieder et al. 2013; Renaud & Gieles 2015a,b,
amongst others) showed that the tidal forcing that the clusters ex-
perience along their trajectory in the galaxy has a strong influence
on their dynamical evolution. A sophisticated modelling of the ex-
ternal tidal field is then particularly important when describing the
evolution of globular cluster systems, where the clusters form and
evolve in different regions of their host galaxy.

The effect of a sophisticated description of several non-
axisymmetric components of the galactic tidal field on the evolution
of star clusters by using N-body simulations has been investigated
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in previous works. As an example, Gieles et al. (2006) studied the
encounters between giant molecular clouds and star clusters and
how they affect the clusters’ mass-loss rates and dissolution times.
In a subsequent work, Gieles et al. (2007) analysed the effect of spi-
ral patterns in the disc of a galaxy on the evolution of star clusters
following planar orbits. In this study, we will present an analysis
of the effect of a refined description of the Galactic bulge on the
evolution of star clusters. We will refer to the ‘bulge’ as to the (al-
most spherically) component of the Milky Way, covering the region
out to about 4 kpc from the Galactic Centre. More specifically, we
will implement a model of a central rotating bar in NBODY6 (Aarseth
2003), a state-of-the-art code to simulate in great detail the evolu-
tion of stellar clusters. The addition of a time-dependent potential
such as that generated by a rotating bar represents an improve-
ment with respect to the public version of the code. In fact, the
present-day version of NBODY6 includes a description of the gravi-
tational potential generated by a disc-like galaxy, where the bulge
is modelled simplistically as a point mass, and hence unresolved.
The literature is rich with studies estimating the impact of a central
rotating bar on Galactic trajectories of Galactic globular clusters
(e.g. Pichardo, Martos & Moreno 2004; Allen, Moreno & Pichardo
2006, 2008; Moreno, Allen & Pichardo 2008; Moreno, Pichardo &
Velázquez 2014). On the other hand, the only previous work devoted
to a detailed analysis of clusters evolving within a barred potential
using direct N-body simulations has been proposed by Berentzen
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& Athanassoula (2012). The authors followed the dynamical evolu-
tion of clusters and their tidal tails located on planar periodic orbits.
They showed that the mass-loss rate of their simulated clusters is
mainly determined by the average value of the tidal field experi-
enced by the clusters along the orbit and that the shape of the tidal
tails is strongly influenced by the bar. However, their simulated star
clusters were composed of equal-mass particles and they introduced
a gravitational softening length in the force calculation. As crucial
improvements, in this work we introduce more input physics such
as a particle mass function, stellar evolution, formation of binaries,
multiple systems and collisions between stars. In fact, two-body re-
laxation plays a major role in the internal evolution of a star cluster,
being a collisional system (Heggie & Hut 2003), inducing effects
such as star escape and mass segregation. Removing the gravi-
tational softening length from the modelling is then important in
order to obtain more realistic results. We also extend the analysis to
non-periodic planar orbits, identified by extensive orbital analysis.

Another problem to address when describing the evolution of
systems of star clusters is related to the fact that a direct modelling
of massive star clusters is extremely time consuming (Heggie 2014).
The computational effort required to simulate entire star cluster sys-
tems is well beyond the possibilities offered by the present methods.
Several solutions have been proposed to overcome this problem (e.g.
Vesperini & Heggie 1997; Baumgardt & Makino 2003; Gieles et al.
2006, 2007; Lamers et al. 2010). In these studies, the mass-loss rates
and the dissolution times of clusters in tidal fields following differ-
ent orbits and with different initial masses and density profiles have
been computed in terms of analytical equations calibrated by using
the results of N-body simulations. Following this approach, in our
previous work (Rossi & Hurley 2015) we proposed a semi-analytic
evolutionary model calibrated to simulations of small-N clusters to
predict the dissolution time and the mass evolution of star clusters in
relation to their orbits within the host galaxy. However, that model
is only valid for the simplistic case of an axisymmetric representa-
tion of the host galaxy. In the present work, we extend the method
to the more general case of time-dependent potentials, such as that
generated by a rotating bar.

The paper is structured as follows. In Section 2, we present the
model of the Galactic bar and our set of N-body simulations. Section
3 includes an analysis of the effect of the bar on some of the main
parameters defining a star cluster, an orbital analysis performed in
order to identify typical orbit families in a barred potential and a
study of how different trajectories influence the dynamical evolution
of the simulated clusters. In Section 4, we follow the evolution of
the tidal radius of the clusters in comparison to the theoretical
predictions. Section 5 presents our new evolutionary model based
on small N-body simulations to describe the mass evolution of
clusters in time-dependent tidal fields and in Section 6 we discuss
the results of our analysis.

2 M E T H O D S

2.1 Model of the Galaxy

The current public version of NBODY6 (Aarseth 2003) includes a
description of the gravitational potential generated by a multicom-
ponent disc galaxy composed of a bulge, disc and halo. In particular,
the bulge is described as a point mass, the disc is represented by a
classic Miyamoto–Nagai potential (Miyamoto & Nagai 1975) and
the halo is modelled as a logarithmic potential. We refer to Rossi
& Hurley (2015, hereafter Paper I) for a more comprehensive sum-
mary of the potential implemented in NBODY6. We now extend the

Table 1. Parameters of the adopted mass model. In this notation, Mb,tot is
the total mass of the bulge. Mbar is the mass of the bar, a, b and c are the
semi-axes of the bar, �bar is the pattern speed of the bar and n defines mass
density profile of the bar. Mdisc is the total mass of the disc, adisc and bdisc

are scalelengths defining the Miyamoto–Nagai potential. R� is the assumed
Galactocentric distance of the Sun and vLSR is the value of circular velocity
curve at R�.

Parameters Value Reference

Mb,tot 1.0 × 1010 M� Irrgang et al. (2013)
Mbar 9.8 × 109 M� Weiner & Sellwood (1999)
a 3.5 kpc Gardner & Flynn (2010)
b 1.4 kpc
c 1.0 kpc
�bar 55.9 km s−1 kpc
n 2 Pfenniger (1984)
Mdisc 7.2 × 1010 M� Irrgang et al. (2013)
adisc 3.26 kpc
bdisc 0.29 kpc
R� 8.33 kpc Gillessen et al. (2009)
vLSR 239.7 km s−1 Irrgang et al. (2013)

description of the gravitational potential by adding a central rotat-
ing bar, modelled as a triaxial ellipsoid following a Ferrers density
profile (Pfenniger 1984)

ρ(x, y, z) =
{

ρc(1 − m2)n, m < 1
0, m ≥ 1

, (1)

where n is a positive integer and

m2 = x2

a2
+ y2

b2
+ z2

c2
.

In this notation a, b and c are the semi-axes of the ellipsoid, where
a > b > c. According to previous studies adopting a Ferrers el-
lipsoid to model the Galactic bar (e.g. Pfenniger 1984; Ortolani
et al. 2011; Berentzen & Athanassoula 2012), we set the density
profile parameter n = 2. As seen in projection on the Galactic plane
from the North Galactic Pole, the Galactic bar rotates in a clock-
wise direction with pattern speed �bar. We refer to Appendix A and
to Pfenniger (1984) for a detailed characterization of the gravita-
tional potential and forces associated with this mass distribution.
Hereafter, we will refer to the version of NBODY6 including a more
sophisticated description of the Galactic bulge as NBODY6+BAR. The
adopted values of the parameters of the Galactic mass model and
the associated references are summarized in Table 1. Fig. 1 shows
the mass density on the Galactic plane as a function of the Galac-
tocentric distance (top panel) and the logarithmic colour map of
the mass density projected on the (x, z) plane (bottom panel). Both
of the plots show the mass density along the major axis a of the
Galactic bar. The corotation resonance for the adopted mass model
is located at approximately 4.2 kpc from the Galactic Centre.

We note that the total mass of the model is the same as in Paper I,
but in this work 98 per cent of the bulge mass is included within the
bar, while only 2 per cent is included in the point-mass component
(not included in Fig. 1).

In order to compare the evolution of star clusters in a barred
potential with the more simplistic case of an axisymmetric poten-
tial, it is useful to define an axisymmetrized version of the barred
mass model. We will refer to the axisymmetrized version as the
model that includes the whole mass of the bulge within the point-
mass component (in other words, the same mass model adopted in
Paper I). It is important to note that this approach involves
two steps: first making the potential axisymmetric and then
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Impact of a bar on the evolution of star clusters 1455

Figure 1. Top panel: mass density on the Galactic plane as a function of
the x coordinate, along the bar semimajor axis. The different lines indicate
the contribution of the various Galactic components, as indicated in the
legend. Bottom panel: logarithmic colour map of the mass density projected
on the (x, z) plane. The plots do not include the contribution of the central
point mass, since the density would be infinite and hence not graphically
representable.

changing the radial density profile in the inner regions. However,
about 70 per cent of the total mass of the bar is included within
only 1.5 kpc from the Galactic Centre, so we expect the axisymme-
try breaking to be the dominant effect for Galactocentric distances
greater than this value.

To address some of the problems posed by our analysis we used
NIGO (Rossi 2015), a Numerical Integrator of Galactic Orbits. This
standalone code has proved to be a useful support to NBODY6 for
a wide range of experiments, such as preliminary orbital analysis,
calibration of mass models and numerical orbit integration accuracy
tests. NIGO includes an implementation of the gravitational potential
model implemented in NBODY6+BAR and can simulate the orbit of a
large number of test particles, allowing us to predict the Galactic
orbits of star clusters returned from NBODY6. We note that in NIGO the
star cluster is represented as one test particle and the integration of an
orbit is much faster than a full N-body integration. Furthermore, the
integration of the equations of motion (EoMs) in NIGO is performed
with a Shampine–Gordon integration scheme, while NBODY6 is based
on the Hermite integration scheme. The consistency of the orbits
predicted from the two codes acts as further proof of the validity of
the methods that we adopted (see Appendix A).

2.2 Initial set-up of the simulations

Consistent with Paper I, our simulated star clusters are characterized
by a Kroupa stellar initial mass function (Kroupa 2001). The stars
follow a Plummer sphere distribution (Plummer 1911) and are ini-
tially in virial equilibrium. We did not take the tides into account in
the virial equilibrium calculation, i.e. we neglected any dependence
of the Plummer models on the initial position and velocity of the
clusters in the Galaxy. For all the simulations, we selected the value
of the metallicity to be [Fe/H] = −0.5. The fraction of primordial
binaries has been set equal to 5 per cent of the initial number of

stars and the binary orbital set-up has been chosen as described in
Geller, Hurley & Mathieu (2013). In our N-body simulations, we
chose an approximate initial value of the escape radius of our star
cluster, doubling the value determined by applying equation (A6)
of Paper I to the axisymmetrixed version of our mass model

r3
lim = GMc

1
R

d�(R)
dR

∣∣ − d2�(R)
dR2

∣∣∣
Rc

. (2)

We refer to Paper I for a description of the various terms in the
equation. The choice to double the value of the escaper radius
is dictated by the fact that equation (A6) is valid in the case of
circular orbits in axisymmetric potentials. An underestimation of
the maximum distance after which a star is treated as an escaper in
the simulation may cause an exclusion of stars still gravitationally
bound to the cluster, resulting in a misinterpretation of the evolution
of the cluster parameters. Setting this limit to a value which should
be comfortably larger than the actual tidal radius avoids this effect,
noting that there is no harm in continuing to integrate stars after
they ceased to be bound. In fact, the only motivation for invoking
an escape radius during the simulations is to save computational
effort by reducing N over time as stars are deemed to have escaped.

3 DY NA M I C S O F STA R C L U S T E R S IN
A BA R R E D POT E N T I A L

3.1 The ‘radius of influence’ of the bar

The first piece of information that we need in order to character-
ize the dynamics of a star cluster under the influence of a non-
axisymmetric bulge is the minimum distance from the Galactic
Centre at which we can confidently neglect the impact of a bar on
the evolution of the clusters. In order to obtain an indication of the
effect of the bar as a function of the Galactocentric distance of the
clusters, we ran a set of N-body simulations of star clusters follow-
ing different trajectories. In particular, we followed the evolution of
clusters orbiting in the Galactic plane initially located at R = 1, 2,
3, 4, 6 and 8 kpc with initial number of stars N = 1 × 104, 2 × 104

and 5 × 104. The initial velocity of the clusters is the one generating
a circular orbit in the axisymmetrized mass model. Since we know
the dissolution time for these clusters in the axisymmetrized poten-
tial (see Paper I), we can compare the dissolution time expected for
the clusters within an axisymmetric potential and the dissolution
time from the new set of models. We also note that a clockwise and
an anti-clockwise orbital evolution of a cluster in an axisymmet-
ric potential are equivalent. On the other hand, initial state vectors
with the same magnitude but opposite direction of rotation will re-
sult in different orbits when the potential includes a rotating bar
and, in principle, we expect that different trajectories will affect the
evolution of star clusters in different ways. Following these con-
siderations, in this experiment we studied separately the cases of
orbits rotating in the same direction and in the opposite direction
with respect to the Galactic bar. As seen from the North Galactic
Pole, the bar rotates in a clockwise direction and the angular mo-
mentum vector points towards the South Galactic Pole. We then will
refer to clockwise and anti-clockwise rotating trajectories as orbits
with aligned and anti-aligned angular momentum with respect to
the angular momentum of the bar, respectively.

For all the simulations, we defined the time of dissolution as
the time at which only 300 stars remain gravitationally bound. The
reason for this choice is to avoid small-N statistical fluctuations in
the dissolution time due to the presence of hard binaries (or not),
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Figure 2. Ratio of the dissolution time of clusters evolving in a barred
potential and of the predicted dissolution time if the clusters were evolving in
an axisymmetric potential. The vertical dotted lines show the location of the
corotation resonance. The shaded area represents the uncertainties affecting
the value of the theoretical dissolution time. Such uncertainties have been
computed by propagating the errors on the values of the parameters β and k
(see equation 3) derived in Paper I.

which could overly affect the evolution of the final stages of a star
cluster.

In order to evaluate the extent of the dynamical influence of the
bar, for each N-body simulation we computed the ratio of the dis-
solution time in a barred potential to the dissolution time predicted
by equation (13) of Paper I, valid to describe clusters following
circular planar trajectories in the axisymmetrized mass model. We
recall that

tdiss = k

[
N

ln(γN )

]β [
1

R

d�(R)

dR
− d2�(R)

dR2

]−1/2

, (3)

where γ = 0.02, β = 0.88, k = 256.53, R is the Galactocentric
distance of the cluster’s centroid, � is the Galactic gravitational
potential and N is the initial number of stars. Fig. 2 shows the
results of this analysis.

First, we note that simulated clusters with different initial number
of stars show the same value of the ratio of dissolution times within
the uncertainties on the theoretical value of the dissolution time
(the importance of this result will be discussed in Section 5). The
ratio between the dissolution time in an axisymmetric potential
and the dissolution time in a barred potential converges to unity,
within the uncertainties of the theoretical model, for Galactocentric
distances greater than 4 kpc, while its value fluctuates in the inner
regions of the Galaxy. As expected, orbits with aligned and anti-
aligned angular momentum with respect to the angular momentum
of the bar show different values of the ratio of the dissolution times.
The inclusion of a bar leads to a change of the shape of the clusters’
trajectories, which then experience different tidal forcing along their
orbits, inducing changes in the mass-loss rates and hence in the

dissolution times. The change of the orbit’s shape is more important
for clusters with aligned orbital angular momentum, as is noticeable
in the bigger fluctuations of the ratio between dissolution times in
Fig. 2. Quite surprisingly, we found that the cluster on the innermost
orbit with anti-aligned angular momentum survives longer than the
cluster with same initial conditions moving in an axisymmetric
potential. Such a difference could be owing to the different radial
mass density profile in the very inner regions of the Galaxy, as
described above. In the light of these preliminary results, in this work
we have focused our subsequent analysis on the inner 4 kpc of the
Galaxy, which corresponds roughly to the radius of the corotation
resonance. Furthermore, simulations with a barred potential are
computationally more challenging than those without a bar, since
the EoMs associated to a bar are quite complicated (see Appendix
A). This provides further justification for taking into account the
presence of a Galactic bar only where it is needed.

3.1.1 Orbits of the star clusters, bar shocks and mass-loss rates

Lamers et al. (2010) studied the effect of orbital eccentricity on the
mass-loss rate of clusters in a steady tidal field. The authors con-
cluded that the mass-loss rate varies with the orbital period of the
cluster and it is found to be higher at the perigalactic passage of the
cluster. In this section, we analyse the evolution of the mass-loss
rates of clusters orbiting within the inner regions of a barred Milky
Way-like bulge. The mass-loss is studied after the initial phase of
evolution, which is dominated by stellar evolution effects. As test
cases, we selected two clusters from our sample, namely the clusters
initially located on the Galactic plane at 1 and at 2 kpc, respectively,
and with orbital angular momentum aligned with the angular mo-
mentum of the bar. Both the clusters are initially composed of N = 2
× 104 stars. We then evaluated the evolution of the mass-loss rate for
the two cases during two orbital periods in the bar-corotating frame
of reference. Fig. 3 shows the result of our analysis. Focusing first
on the cluster located initially at 1 kpc (left-hand column of Fig. 3),
we note that the maxima in the mass-loss rate (or equivalently, the
minima of dM/dt) are not strictly related to the perigalactic passages
of the cluster. Instead, it appears that the mass-loss rate decreases
in correspondence with the first two perigalactic passages and it is
enhanced at the apogalactic passages. On the other hand, the third
(and easily largest) drop in the derivative is clearly related to a close
perigalactic passage. Similar behaviour is found for the cluster ini-
tially located at 2 kpc. The first perigalactic passage corresponds to
an enhancement in the mass-loss rate, whereas the second and third
spikes in mass-loss correspond to the apogalacticon of the clusters
and the second perigalactic passage is associated with a minimum
of the mass-loss rate (a maximum of the derivative). Delving deeper,
we found a correlation between the minima of dM/dt and the max-
ima of the curvature of the orbit (lower panels in Fig. 3). This could
be expected, since the maxima in the curvature of the orbit corre-
spond to a sudden deceleration and subsequent acceleration of the
cluster, leading to a quick variation of the magnitude and direction
of the velocity vector. In other words, the mass-loss rate peaks in
correspondence with the maxima of the centrifugal acceleration ex-
perienced by the cluster in the bar-corotating frame of reference.
However, in-line with the results of Lamers et al. (2010), close peri-
galactic passages can still lead to increases in the mass-loss rate,
as noticeable during the third perigalactic passage of the cluster
initially located at 1 kpc. There is also evidence for the mass-loss
rate pattern to have a frequency related to the orbital period of the
clusters in the bar-corotating frame of reference rather than to the
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Impact of a bar on the evolution of star clusters 1457

Figure 3. Top panels: projection of the orbit on the Galactic plane as seen in the bar-corotating frame of reference for the star clusters with N = 2 × 104

and with bar-aligned angular momentum, initially located at 1 kpc (left-hand panel) and 2 kpc (right-hand panel). The initial velocity of the clusters is the
one generating a circular orbit in the axisymmetric gravitational potential. The red dashed line shows the contours of the bar. The orbits are shown for two
orbital periods. Middle panels: time evolution (for two orbital periods) of the first time derivative of the total number of stars for the cluster initially located at
1 kpc (left-hand panel) and 2 kpc (right-hand panel). Bottom panels: time evolution (for two orbital periods) of the curvature of the orbit of the clusters for the
cluster initially located at 1 kpc (left-hand panel) and 2 kpc (right-hand panel). In all the plots, the red filled circles indicate the moment of the minimum in the
number-loss rates, the open blue squares the moment of the perigalactic passages and the black crosses the moment of the apogalactic passages. The vertical
black dot–dashed lines show the separation between the two orbital periods considered.

orbital period in the inertial frame. Finally, we note that there is a
time delay between the increase in the mass-loss clearly induced
by a close perigalactic passages and the perigalactic passage itself
(see the third perigalactic passage of the cluster starting at 1 kpc in
the left-hand column of Fig. 3). This evidence is consistent with the
results of Küpper et al. (2010).

3.1.2 Effect of the bar on some fundamental structural
parameters of a star cluster

As a preliminary analysis of the effect of the bar on the evolution
a star cluster, we compared the evolution of some of the structural
parameters of a star cluster in the case of an axisymmetric and a
barred potential. Fig. 4 shows the evolution of total mass, half-mass
radius and internal velocity dispersion of two clusters with N =
105 stars evolving in the axisymmetrized mass model and in the
barred mass model, respectively. Both clusters have same initial

position on the Galactic plane (R = 3 kpc) and same initial velocity
vector. The value of the initial velocity is the one generating a
circular orbit in the axisymmetrized mass model. First, we note that
in this case the cluster evolving in the barred potential dissolves
more quickly than the cluster in the axisymmetric potential. After
an initial mass-loss phase dominated by stellar evolution processes,
in which the evolution of the two clusters is similar, the cluster
on the barred potential experiences a higher mass-loss rate than
the one in the axisymmetric potential. Also, the sizes of the two
clusters are different. Even though the overall trend of the half-
mass radius is similar for the two cases, the cluster on the circular
orbit in the axisymmetric tidal field grows larger than the one in the
barred model. The evolution of the internal velocity dispersion of
the cluster members shows the same trend in both cases, but for the
simulation with the bar the cluster experiences some kicks in the
velocity dispersion, corresponding to the moment of the perigalactic
passages and/or to the maxima in the centrifugal acceleration in the
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Figure 4. Effect of a Galactic bar on the evolution of total mass, half-mass
radius and internal velocity dispersion of two initially identical clusters with
N = 105 stars evolving within an axisymmetric potential and a rotating-
barred potential, respectively.

bar-corotating frame of reference, as discussed above. On the other
hand, the cluster on the circular orbit presents a more regular trend.

3.2 Orbital analysis

In Section 3.1, we showed that, according to the results of our
simulations, the presence of a bar has a non-negligible effect on the
dissolution time of clusters in the inner 4 kpc of the Galaxy. We
also noted that different initial conditions generate different orbits
with different dissolution times.

Now we face the problem of characterizing the dependence of
the evolution of clusters on their trajectory in the Galaxy. The only
previous work that presented N-body simulations of star clusters in
a barred potential (Berentzen & Athanassoula 2012) is focused on
the study of clusters on periodic orbits in the frame of reference
corotating with the bar. According to the authors of that study,
the importance of these orbits resides in the fact that they are the
backbones of stellar bars, because they can confine regular regions

in phase space around them. In order to present a more complete
study, we performed an orbital analysis to identify typical families
of planar orbits in a barred potential.

The main tool that we used is the classic Poincaré surface section
(or Poincaré diagram). We present an analysis similar to the one
proposed in Pichardo et al. (2004), in which the authors showed
different Poincaré surface sections generated by different models of
the Galactic bar. We briefly recall that the presence of an integral (or
constant) of motion in a dynamical system reflects the presence of
symmetries, according to Noether’s theorem (for a brief review see
Heggie & Hut 2003, p. 59). In particular, in an axisyimmetric static
potential the conservation of energy corresponds to the time sym-
metry of the system, while the conservation of the i–component of
the angular momentum reflects the symmetry of the system along
the i-axis. For the case of a rotating-barred potential, both these
symmetries are broken and neither the energy nor the angular mo-
mentum are conserved singularly, but a combination of them is.
The new integral of motion is the Jacobi’s constant Ej, which in
the rotating frame of reference has the form (Binney & Tremaine
2008)

Ej = 1

2
|ẋ|2 + � − 1

2
|� × x|2, (4)

where (x,ẋ) are position and velocity in the corotating frame of
reference, respectively, � is the specific potential energy and �

is the pattern speed of the bar. We created the Poincaré surface
section following the usual procedure. For each orbit, and in the
bar-corotating frame of reference, we found the crossing points xc

of the orbit of the test particles with the x-axis and the corresponding
velocity component vx, c. Corresponding to each intersection, we
plotted a point (xp, vx, p) in the Poincaré diagram, where

⎧⎨
⎩

xp = xc

if vy,c > 0
vx,p = vx,c⎧⎨

⎩
xp = −xc

if vy,c < 0
vx,p = −vx,c

. (5)

The main advantage of the surface section for orbital analysis studies
is that two orbits with the same energy cannot occupy the same point
of the Poincaré diagram. In our specific case of a barred potential,
the Jacobi integral is the equivalent of the energy and the orbital
analysis was performed in the bar-corotating frame of reference.

The next step is to select a typical value of the Jacobi integral for
bulge star clusters and to create the associated Poincaré diagram. To
do this, we took the sample of eight Galactic bulge globular clus-
ters with known state vectors (generated assuming a Galactocentric
distance of the Sun equal to R� = 8.3 kpc) found in Rossi et al.
(2015). Fig. 5 shows the Jacobi integral of the selected sample of
star clusters, obtained by combining their initial state vector with
the adopted Galactic model. The dispersion of the value of Ej within
the sample bulge clusters is relatively small and in this study we
selected as the typical Ej the mean value 〈Ej〉 = −2.1274 × 10−5

(km s−1)2.
Next we generated a set of initial conditions for test particles in the

inner 4 kpc of the Galaxy with the selected 〈Ej〉 value for the Jacobi
integral and integrated their orbits in the gravitational potential
described in Section 2.1. We generated the Poincaré diagram by
integrating 100 orbits forward in time for 4000 Myr using NIGO

(Rossi 2015). The Poincaré section is shown in Fig. 6.
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Impact of a bar on the evolution of star clusters 1459

Figure 5. Jacobi integral for eight bulge globular clusters with known state
vector as a function of their Galactocentric distance. The dot–dashed line
represents the average value of Ej.

Inspired by the results of Pichardo et al. (2004), we identified
four main families of orbits, which have been highlighted with
different colours in Fig. 6. A more detailed description of each orbit
family is presented in Section 3.3. In order to estimate how different
orbits, and hence different tidal forces, influence the evolution of star
clusters in the inner regions of a Milky-Way-like galaxy, we chose
a representative orbit for each family and ran N-body simulations
of clusters following the selected trajectories.

3.3 Evolution of clusters belonging to different orbital families

In this section, we present the evolution of clusters belonging to
the identified orbit families. For each orbit family, we selected a
representative orbit and followed the evolution of a cluster with
initial number of stars N = 5 × 104 until dissolution. We note here
that, even though the simulated star clusters are not as massive as the
more massive globular clusters that we observe in the Galaxy, results
from small-number simulations can be used to retrieve information
on bigger clusters, as discussed in Section 5.

3.3.1 Family I

The clusters belonging to Family I follow a boxy trajectory in the
bar-corotating frame of reference. Their orbital angular momentum
is aligned with the angular momentum of the bar and the minimum
value of the perigalactic distance that the clusters reach is approxi-
mately equal to the semiminor axis of the bar (b = 1.5 kpc). The blue
lines in the plots of Fig. 7 show the evolution of some of the main
parameters characterizing the evolution of a cluster with initial N =
5 × 104 stars. In order to compare the behaviour of different cluster
families, we plotted the evolution of the parameters as a function of
the time normalized to the dissolution time. The star cluster does
not experience dramatic mass-loss events along its trajectory, and
the overall trend of the mass evolution is quite smooth. However, it

Figure 6. Poincaré diagram and identified families of orbits generated by integrating the equation of motion of 100 test particles in the adopted mass model.
The corresponding value of the Jacobi integral is 〈Ej〉 = −2.1274 × 10−5 (km s−1)2. Four distinct orbit families are identified and a typical orbit highlighted
for each (with the bar ellipsoid shown in red for reference).
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1460 L. J. Rossi and J. R. Hurley

Figure 7. Evolution of some of the fundamental parameters of the simulated star clusters. Panels (a)–(e) show the results for simulations with initial
N = 5 × 104 stars, while panel (f) shows the results for simulations with initial N = 1 × 104 stars. The blue, red, black and yellow lines show the results
for clusters belonging to the orbital Families I, II, III and IV, respectively. Panel (a): evolution of the total mass normalized to the dissolution time. Panel
(b): evolution of the half-mass radius normalized to the dissolution time. Panel (c): evolution of the core radius normalized to the dissolution time. Panel (d):
evolution of the half-mass relaxation time normalized to the dissolution time. Panel (e): evolution of the velocity dispersion of the cluster members normalized
to the dissolution time. Panel (f): evolution of the cumulative number of escapers until dissolution. The reason for which this plot the results of simulations
with N = 1 × 104 stars instead of N = 5 × 104 stars is that for small N runs the effect of the bar shocks on the total number of escapers can be visualized easily
than for bigger N runs.

is evident that bar shocks have some minor effects on the cluster. In
particular, we note that the velocity dispersion of the cluster mem-
bers experiences some kicks (Fig. 7e), which relates to an increase
in the cumulative number of the escapers (Fig. 7f).

3.3.2 Family II

The star clusters belonging to Family II change the direction of
rotation with respect to the bar rotation (in the bar-corotating frame
of reference), as indicated by the distribution of the red points in
Fig. 6. The clusters are confined within the bar for most of their
orbital period and their trajectory is elongated along the bar semi-
major axis. Also in this case, the simulated star cluster (N = 5 ×
104 stars) experiences mild shocks along its orbit, which induce
a small modulation in the mass-loss trend (Fig. 7c), a kick in the
velocity dispersion of the cluster members (Fig. 7e) and an increase
in the cumulative number of escapers (Fig. 7f). Also, the evolution
of the half-mass radius presents a typical trend found in other works
(e.g. Sippel et al. 2012), and the core collapse of the simulated star
cluster happens at about 2/3 of the cluster lifetime (see Fig. 7c).
The simulated star cluster dissolves after about 4200 Myr of evo-
lution. We note that the evolution of the cluster belonging to this

orbital family resembles very closely the evolution of the cluster be-
longing to Family I, and also the dissolution times are comparable.
This could be explained as a consequence of the same average tidal
forces experienced by the clusters, as evident from the similarity
between the orbits of Families I and II.

3.3.3 Family III

The orbits belonging to Family III anti-rotate with respect to the bar
and they are confined within the bar for most of their orbital period.
In the bar-corotating frame of reference, these orbits are elongated
along the semiminor axis of the bar. The perigalactic passages of
this orbital family are closer to the Galactic Centre than Families I
and II, and the clusters survive for a shorter time as a consequence
of the stronger tidal field. This effect is visible in Fig. 7(f), where the
cumulative number of escapers of the cluster belonging to Family
III presents a steeper gradient than Families I and II. However, as
for the Family I and Family II orbits, the overall evolution of the
cluster mass is quite regular, with small increases in the velocity
dispersion of the cluster members induced by bar shocks. Also in
this case, the core collapse happens at about 2/3 of the cluster’s
lifetime. The dissolution time in this case is about 3200 Myr.
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Impact of a bar on the evolution of star clusters 1461

3.3.4 Family IV

The orbits of Family IV are characterized by chaotic behaviour
(yellow points in Fig. 6). They frequently change the direction of
rotation with respect to the rotation of the bar during their orbital
evolution, they are mostly confined within the bar and can reach very
small perigalactic distances. Of all of the families that we identified,
this family is the one that affects in the most dramatic way the
evolution of a star cluster that follows one of its orbits. We followed
the evolution of a star cluster with initial number of stars N = 5 ×
104 and plotted the results in Fig. 7. When the cluster reaches its
perigalactic distance all its structural parameters experience a strong
perturbation. The evolution of total mass, half-mass radius, velocity
dispersion and cumulative number of escapers indicates that the
internal evolution of the cluster is strongly affected by the tidal
shocks. The extreme perturbation due to tidal shocks is easily visible
in the evolution of the velocity dispersion of the cluster members
(Fig. 7e), where the energy gain from the gravitational interaction
with the external field at the perigalactic passage induces sudden
kicks and consequent relaxation in the σ v profile. This simulated
cluster with N = 5 × 104 stars dissolves in about 340 Myr, i.e. a
much shorter lifetime than Families I–III.

We also evaluated the relative importance of each family of orbits
in populating the Poincaré diagram. The results show that 20 per
cent of the orbits belong to Family I, 28 per cent belong to Family II,
26 per cent belong to Family III and 26 per cent belong to Family IV.
Considering that the initial position and velocity of the clusters with
same Jacobi integral have been selected randomly, it appears that
each orbit family has roughly the same probability of realization in
the adopted mass model.

4 EVO L U T I O N O F T H E TI DA L R A D I U S

In previous work (e.g. Allen et al. 2006, 2008; Moreno et al. 2014),
the tidal limit of star clusters in a barred potential has been deter-
mined using the theoretical value given by

rt =
[

GMc(
∂Fr
∂r

) + θ̇2 + φ̇2 sin2 θ

]1/3

, (6)

where Mc is the mass of the star cluster and Fr is the component of
the gravitational acceleration along the line that connects the cluster
centre with the Galactic Centre. (r,θ ,φ) are the spherical coordinates
of the cluster in the inertial Galactocentric frame of reference. We
refer to Allen et al. (2006) for a detailed derivation of equation
(6), which represents a generalization for a 3D orbit in a generic
tidal field of equation (A6) in Paper I, which in turn is valid for
the simplistic case of a cluster on a circular planar orbit within an
axisymmetric potential. In this section, we aim to check whether
the tidal radius of our simulated clusters evolving within a barred
potential is consistent with the prediction given by equation (6).

We fitted a King profile (King 1962)

�(r) = K

⎧⎪⎨
⎪⎩

1[
1 + (r/rc)2

]1/2 − 1[
1 + (

rt,k/rc

)2
]1/2

⎫⎪⎬
⎪⎭

2

(7)

to our simulated star clusters along their trajectory, where �(r) is the
surface density as function of the distance from the cluster centre, K
is a scale constant, rc is a core radius and rt, k is the tidal radius. We
note that in this case we assumed that the tidal limit of the star cluster
corresponds to the point where its surface density drops to zero. An
alternative method (Webb et al. 2013) is to evaluate the distance

Figure 8. Evolution of the tidal radius of the simulated star clusters. The
black points represent the tidal limit and the associated uncertainties obtained
by fitting a King profile to the clusters. The red open circles and crosses
represent the tidal limit at the apogalactic passage and perigalactic passage,
respectively, obtained from equation (6). The continuous blue line shows
the boundary imposed in the simulations in order to identify escapers.

from the centre of the cluster of the farthest gravitationally bound
star, which can be determined according to the value of the energy
of the cluster members. We then compared the fitted tidal radius
of the cluster along its orbit with the maximum tidal limit (at the
apogalactic passage) and the minimum tidal limit (at the perigalactic
passage) computed from equation (6). Fig. 8 shows the results for
the clusters with initial N = 5 × 104 stars, belonging to the identified
orbit Families II and IV. We note that the evolution of the tidal radius
for Families I and III is not shown because these are qualitatively
similar to that of Family II. For the tidal limit obtained by fitting
a King profile to the simulated star cluster, we also included the
uncertainty calculated using a non-linear least-squares fit method.

The clusters in orbit Families I–III show similar behaviour. At
the start of the simulation the tidal radius of the star clusters is
approximately the theoretical tidal radius at the perigalactic passage.
They start to expand until eventually they reach their maximum
size, after which their tidal radius decreases as a consequence of
mass loss. Towards the final stages of the cluster’s evolution, the
fit with a King profile is less robust than in the initial phases,
as seen in the increase of the error bars associated to the fitted
tidal limit. For the clusters belonging to Families I–III, we can
conclude that, considering the uncertainties of the fit model, the
tidal limit obtained by fitting the distributions of the stars in the
clusters with a King profile is included within the maximum and
the minimum tidal limit predicted by equation (6). This result can
be explained considering that a ‘tidal radius’ of a King profile
is not directly related to the tides, but merely describes the size
of the cluster. When going from perigalactic to apogalactic, the
actual tidal radius grows (see e.g. Webb et al. 2013), but the growth
of the King radius, which is set by relaxation, takes longer. The
differences between the theoretical and the fitted tidal limits can
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then be interpreted in terms of the delayed response of the cluster to
the external tidal field. On the other hand, the fit fails miserably for
the cluster belonging to Family IV. We recall that this star cluster
experiences important bar shocks, which strongly perturb its whole
structure. Immediately after the third perigalactic passage the fit
produces a jump in the tidal limit from about 10 to 20 pc. After this
shock, the tidal limit eventually decreases until the next perigalactic
passage, when the cluster experiences another strong perturbation.
This behaviour repeats until the sixth perigalactic passage, after
which the cluster cannot relax to an equilibrium configuration.

In Fig. 8, we have also shown the maximum distance from the
cluster centre that defines the limit of the clusters in the N-body
simulations (as described in Section 2.2). Its value is about as twice
as big as the maximum value of the theoretical tidal limit at the
apogalactic passage, confirming that that we are not excluding any
of the cluster members in the N-body simulation.

5 A N E W FO R M U L AT I O N O F T H E
E VO L U T I O NA RY E QUAT I O N S

In Paper I, we proposed an evolutionary model calibrated to the
results of a set of N-body simulations of star clusters evolving in
an axisymmetric potential and following eccentric orbits slightly
inclined to the Galactic plane. As we noted in Section 3.1, the
model we proposed in Paper I still represents a good analytical
description of the evolution of disc clusters orbiting in a barred
Galaxy at Galactocentric distances R � 4 kpc, where the presence
of the bar has a negligible impact on the evolution of star clusters.
The scenario in the inner regions of the Galaxy is more complicated.
In fact, we found that when a bar is present the Galactic orbit of a star
cluster influences its evolution in a non-trivial way. Also, slightly
different initial conditions generate orbits belonging to different
families, that show sensible differences in their dynamical evolution.
It seems then a hard task to calibrate a trivial equation that predicts
the dissolution time as function of the Galactic orbit of a cluster
in the bulge. A possible solution of the problem of modelling the
mass-loss processes of star clusters in complex potentials can be
found in Kruijssen et al. (2011). The authors modelled the mass-
loss rates due to stellar evolution and dynamical evolution using
an approach based on detailed stellar evolution models and semi-
analytic descriptions of two-body relaxation and tidal shocks.

In this section, we propose an alternative method to predict the
lifetime and the mass-loss evolution of a star cluster with any initial
mass on any Galactic orbit based on the results of direct N-body
simulations. According to our solution, all we need is an N-body
simulation of the cluster on the selected orbit with an initial arbi-
trary number of stars. We recall equation (3) which describes the
dissolution time of a cluster on a circular orbit in the Galactic plane.
We can separate the equation into two components: the first term in
parenthesis described the dependence of the dissolution time of the
star cluster on internal dynamical processes, while the second term
in parenthesis describes the dependence of the dissolution time on
the tidal interaction of the cluster with the external potential. The
theoretical ratio between the dissolution time of two clusters on the
same orbit with initial number of stars N1 and N2 is

tdiss(N1)

tdiss(N2)
=

[
N1 ln(γN2)

N2 ln(γN1)

]x

, (8)

where the dependence of the external potential disappears as a
common factor in the equation. We can use the results of N-body
simulations presented in Paper I (for N = 1 × 104, 2 × 104,
3 × 104 and 4 × 104) and the new set of simulations with a barred

Figure 9. Ratio between dissolution times of star clusters with different
initial number of stars and following the same orbit. The ratio between
dissolution times is plotted as function of the initial Galactocentric distance
of the clusters. The dash–dotted lines show the theoretical prediction for
different initial numbers, as indicated in the legend of the figures. The open
circles, diamonds and crosses show the results from N-body simulations.
The results for clusters evolving in an axisymmetric mass model are shown
in the top panel, while in the bottom panel presents the results for a barred
Galactic model.

potential to check whether equation (8) can predict the ratio between
dissolution times to good accuracy. In the top panel of Fig. 9 we
show the ratio between the dissolution time for a cluster following
a circular trajectory in an axisymmetric potential for the simulation
set presented in Paper I compared to the theoretical prediction given
by equation (8). The R-axis value of the data points corresponds to
the initial Galactocentric distance of the cluster. The bottom panel
of Fig. 9 shows the results of the same analysis applied to the sim-
ulation set of clusters evolving in a barred potential presented in
the this work. For each initial Galactocentric distance, we plotted
both the ratio for orbits with aligned and anti-aligned orbital angu-
lar momentum. The results show that equation (8) can predict to
good accuracy the ratio between dissolution times of clusters with
different initial masses following the same Galactic orbit for both
the simulations in the axisymmetric potential and in the barred po-
tential. We note that generally the best results are obtained when
comparing the dissolution times of clusters with initial number of
stars N � 2 × 104. An interpretation of this behaviour could be
that the simulations with initial number lower than this limit are
affected by statistical noise to a greater degree. However, we also
note that the value of tdiss(40k)/tdiss(10k) for the cluster at 1 kpc in
the axisymmetric model determined from the N-body simulations
deviated significantly from the theoretical prediction. Such a dis-
crepancy could be owing to a combination of a small-number effect
and of the fact that the cluster with N = 1 × 104 stars orbiting at
1 kpc dissolves quickly (in about 184 Myr).
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Impact of a bar on the evolution of star clusters 1463

At this point, we advance the hypothesis that the mass evolution
of star clusters on the same orbit scales with the dissolution time and
with the initial mass of the cluster. We assume that we can describe
the mass evolution of a cluster with initial mass M1(0) on a certain
orbit by using a certain function of the time

M1(t) = f1(t). (9)

Our hypothesis is that a second cluster on the same orbit with initial
mass M2(0) experiences a mass loss described by

M2(t) = f2(t), (10)

where

f2(t) = M2(0)

M1(0)
f1

(
t

C

)
(11)

and

C =
[

N2 ln(γN1)

N1 ln(γN2)

]β

. (12)

This assumption can be justified by the results shown in Fig. 7. In
fact, for the orbital Families I–III the evolution of the clusters’ pa-
rameters is only mildly affected by bar shocks, and the overall mass
loss follows a quite regular trend. Furthermore, we noticed that the
ratio of dissolution times of clusters in an axisymmetric and in a
barred mass model (see Fig. 9) presents the same behaviour for clus-
ters with different initial masses, suggesting the presence of a scale
relation between dissolution times of clusters with different masses
on the same orbit. In order to test the validity of our hypothesis, we
performed the following test. We consider a cluster following the
representative orbit of Family III. We ran simulations of this star
cluster using different initial number of stars, in particular N = 1 ×
104, 2 × 104, 5 × 104 and 1 × 105 stars. We then fitted the mass
evolution of the cluster with N = 2 × 104 with the power-law form
proposed in Paper I

M20k(t) = M20k(0)

[
1 −

(
t

tdiss(20k)

)α]
, (13)

where tdiss(20k) is the dissolution time of the cluster resulting from
the simulation. Following our method, we have all the information
required to predict the mass evolution of a cluster with any initial
number of stars on the selected orbit. We then compared our the-
oretical prediction with the results of the N-body simulations with
N = 1 × 104, 5 × 104 and 1 × 105 stars. Fig. 10 shows the results of
this experiment. We note that also in this case the predicted dissolu-
tion times are consistent with the results of the N-body simulations
and that the mass-loss trends are reproduced well. In particular, the
main difference between the simulation result and our prediction is
accentuated in the initial phase of the clusters’ evolution, where the
mass loss by stellar evolution plays a major role.

The next step is to check whether this result holds for different
orbits, as we expect. We ran two simulations (N = 2 × 104 and
5 × 104 stars) for each of the four orbit families that we identified.
We then fitted a power-law mass evolution to the simulations with
N = 2 × 104 stars and compared the theoretical prediction with
the results of the N = 5 × 104 N-body simulations. The results are
shown in Fig. 11. The predicted mass evolution is consistent with
the output of the simulations. We also note that each orbit family
is characterized by a slightly different value of the slope α. The
values of the slope parameter of the mass-loss function obtained
for the various orbit families are αI = 0.52, αII = 0.49, αIII = 0.56
and αIV = 0.97. This is likely a consequence of the differences
in the tidal forces experienced by the clusters on different orbits,

Figure 10. Mass evolution of a set of simulations of star clusters belonging
to Family III. The continuous black lines represent the results of N = 1 ×
104, 2 × 104, 5 × 104 and 1 × 105 N-body simulations. The dashed blue line
is the fitted power-law mass evolution to the cluster with N = 2 × 104 stars,
while the dot–dashed red lines represent the prediction from our theoretical
model for the other valued of N.

Figure 11. Comparison between the mass evolution of star clusters with
initial number of stars N = 5 × 104 from N-body simulations and the
prediction obtained applying our theoretical model using simulations with
a lower number of stars (N = 2 × 104).

which result in different average mass-loss rates. Fig. 11 shows also
that in the case of a cluster on a chaotic orbit (Family IV), where
importantly the mass-loss events owing to tidal shocks dominate the
mass evolution of the clusters, the derived scaling relations predict
the mass evolution to a lower degree of accuracy than for more
regular orbits.

For the non-chaotic orbits, we can conclude that the scaling re-
lations derived in Paper I, valid for clusters evolving within an
axisymmetric potential, also apply to the case of a barred potential.
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1464 L. J. Rossi and J. R. Hurley

Figure 12. Projection of the Galactic orbit of HP 1 (top three panels) and of NGC 6553 (bottom three panels) on the Galactic plane (left-hand panel), on the
(x, z) plane (central panel) and on the meridional plane (right-hand panel). Each orbit is shown in the bar-corotating frame of reference. The dot–dashed red
line shows the contours of the bar.

5.1 Reconstructing the initial mass of the globular clusters
HP 1 and NGC 6553

As an example application, we applied this evolutionary model
to reconstruct the mass-loss history of HP 1 and NGC 6553, two
globular clusters ∼13.7 and ∼13 Gyr old, respectively, located in
the Galactic bulge and with an initial state vector determined by
Ortolani et al. (2011) and Zoccali et al. (2001). We determined
the current mass of the clusters from the value of their absolute V
magnitude listed in the Harris catalogue (Harris 1996, 2010 ver-
sion). Form the magnitude, we obtained the luminosity and then the
mass by applying the liner mass-to-light ratio from Bonatto & Bica
(2012). For further details we refer to Paper I. The mass obtained
for HP 1 and NGC 6553 are MHP1 = 1.63 × 104 and MNGC6553 =
7.1194 × 104 M�, respectively. The simulated clusters with initial
number of stars N2 = 2 × 104 with the same orbits of HP 1 and
NGC 6553 and followed the evolution of the clusters until dissolu-
tion. We also note that in this case the trajectory of the clusters is
not confined within the Galactic plane, but has a 3D shape. In order
to check whether the derived scaling relations are valid also for the
case of orbits slightly inclined to the Galactic plane we performed
additional test N–body simulations, finding positive results. Fig. 12
shows the projection of the orbit of HP 1 and of NGC 6553 on the
Galactic plane (x, y), on the (x, z) plane (in the bar-corotating frame
of reference) and on the meridional plane (R, z), where R = (x2 +
y2)1/2. Interestingly, the projection of the orbits of both clusters on
the Galactic plane belongs to our identified orbital Family II. We
set the initial phase angle of the bar equal to 25◦, which is similar

to the value estimated for the Galactic bar according to Pichardo
et al. (2004). We then fitted a power-law mass-loss function to the
results of the simulations to determine the best value of the slope
α and solved the evolutionary equation for the star cluster applying
the Newton–Raphson method, similarly to what we have done in
Paper I. More specifically, in this case to find the initial mass M1(0)
of the target globular cluster corresponds to finding the zero value
of the equation

M1(0) + c1M1(0)1−c2 (ln c3M1(0))c2 + c4 = 0 , (14)

where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c1 = −
(

t
tdiss(N2)

)α (
M2

ln(γAM2)

)αβ

c2 = αβ

c3 = γA

c4 = −M1(t)

. (15)

In this notation M1(t) is the present-day mass of the target globular
cluster and A is the scaling factor to convert between initial mass
and initial number of stars of the cluster under the assumption of
a Kroupa initial stellar mass function (N = AM). Fig. 13 shows
the reconstructed mass-loss history of HP 1 using the results of the
simulation. According to our result, the initial mass of HP 1 was
MHP1(0) ∼ 2.45 × 105 M� and its dissolution time is tdiss, HP1 ∼
15.6 Gyr. For NGC 6553, our approach predicts an initial mass of
MN6553(0) ∼ 3.39 × 105 M� and its dissolution time is tdiss,N6553 ∼
20.3 Gyr.
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Impact of a bar on the evolution of star clusters 1465

Figure 13. Reconstructed mass-loss history of HP 1 and NGC 6553 ob-
tained by applying the proposed method. The present-day age and mass of
HP 1 and NGC 6553 are represented by a blue and red diamond, respectively.

This alternative approach in principle would allow us to recon-
struct the mass-loss history of every Galactic globular cluster with
known age, present-day mass and orbit once we have calibrated
an evolutionary model from a small-number N-body simulation of
each cluster. We estimate that, taking advantage of the computing
power offered by the gSTAR supercomputer at Swinburne Univer-
sity of Technology, we will be able to obtain all the information to
predict the mass evolution of a whole Milky Way-like star cluster
system within the time frame of a month. The main limitation of
this method is that in principle the ratio between dissolution times
is valid under the assumption that the tidal field does not change in
time. The Galaxy represents a complex evolving environment, and
the validity of our method should be tested in time-evolving grav-
itational potentials. We note that in recent work Renaud & Gieles
(2015b) found that the properties of present-day star clusters differ
very little, whether the clusters are embedded in a growing galactic
halo for 12 Gyr, or in a static one. However, this result does not
apply in the context of the bar. Observations and cosmological sim-
ulations (Kraljic, Bournaud & Martig 2012, and references therein)
show that bars are short lived in the early Universe (z � 1). These
results are consistent with the estimate of the age of the Milky
Way bar, which is suspected to be younger than 6 Gyr (Cole &
Weinberg 2002). Even if a bar survives several Gyr, its strength can
vary significantly because of multiple effects such as accretion of
gas, feedback and fuelling of the central region. The other limita-
tion is that currently we do not know the orbit for every Milky Way
globular cluster.

6 D I S C U S S I O N A N D C O N C L U S I O N S

We have presented the results of direct N-body simulations of star
clusters evolving in the gravitational potential generated by a Milky
Way-like galaxy, including a refined description of the Galactic
bulge modelled as a triaxial, non-homogeneous rotating ellipsoid
(a bar). We have found that the bar has a non-negligible effect on
the dissolution time and on the mass-loss of clusters located in the
inner 4 kpc from the Galactic Centre. This means that to model the
evolution of bulge star clusters we have to take into account the

presence of the bar, whereas we can confidently neglect it when
modelling the evolution of outer-disc star clusters.

As a second step, we performed an orbital analysis in order to
identify typical orbit families of star clusters living in the Galactic
bulge. We identified four main families of planar orbits, basing our
characterization on features of the Poincaré surface section associ-
ated to a Jacobi integral representative of observed bulge clusters.
More specifically, Family I includes the clusters that rotate in the
same direction of the Galactic bar, Family II includes clusters that
change direction of rotation with respect to the bar during their
orbital evolution, Family III includes bar-anti-rotating orbits and
Family IV includes chaotic orbits. We followed the evolution of
the main structural parameters of simulated star clusters follow-
ing an orbit representative of each orbital family. We have found
that different orbits influence the mass-loss rates in different way.
The overall evolution of the structural parameters of the clusters
belonging to Families I–III is quite smooth, with only a small mod-
ulation associated to the bar shocks experienced by the clusters
along their orbits. The situation is different for clusters belonging to
Family IV. For these objects, close perigalactic passages strongly af-
fect the value of all the structural parameters of the star clusters, for
which the whole structure experiences a strong perturbation. Also,
the dissolution time of these objects is extremely small if compared
to the typical age of the observed Milky Way globular clusters. As
a conclusion, we might argue that we do not expect to find Galactic
clusters on these orbits, because they would have been destroyed
in the very early stages of the bar instability development. On the
other hand, if we do find such clusters, they could give us important
constraints on the age of the Galactic bar. However, care has to be
taken when interpreting the results for these clusters. In fact, since
their perigalacticon is very close to the Galactic Centre, where the
mass density is higher, dynamical friction could play a major role
in affecting their orbital and internal evolution only making it more
likely for them to have dissolved. Along with dynamical friction,
radial migration can be associated with spiral perturbations of the
Galactic disc (Sellwood & Binney 2002). Even though the spiral
pattern in barred galaxies usually develops outside the bar region,
and hence is not affecting the orbits of objects located in the bulge,
the long-lived Galactic globular clusters could have experienced
radial migration, for instance in the early phases of the Milky Way
evolution before the development of the bar instability. In this work,
we did not consider this effect. Furthermore, the Galaxy model that
we adopted still includes a central point mass, representative of the
bulge spherical component. It is possible that the extremely strong
perturbations that we have found are the consequence of an interac-
tion with a tidal field that quickly diverges in the inner regions of the
Galaxy. This highlights how important it is to obtain a sophisticated
representation of the inner Galaxy and accurate initial conditions of
the clusters when modelling these objects.

We followed the evolution of one of the most important param-
eters defining a star cluster, the tidal radius. More specifically we
tested if the tidal limit of the simulated star clusters obtained by
fitting a classical King profile to the projected surface density is
consistent with the theoretical value adopted in previous works.
We have found that the fitted tidal limit is consistently included
within the range defined by the minimum value (at the perigalac-
tic passage) and the maximum value (at the apogalactic passage)
predicted by the theory, but does not experience strong oscillations.
This could reflect the fact that the clusters don’t respond immedi-
ately to the sudden changes of the external tidal field, and their sizes
correspond to an orbit-averaged value of the tidal limit. Also in this
case, the results are different for the clusters belonging to the orbital
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Family IV, for which the fit with the King profile failed. Likely the
reason for this behaviour is that the whole structure of the clusters
is strongly perturbed by bar shocks at the close perigalactic pas-
sages, and they are unable to relax to an equilibrium configuration.
We also note that there are alternative definitions of the tidal limit,
based on energetic arguments (Webb et al. 2013), and it is possible
that different definitions will lead to different results. The question
of how to best characterize the tidal radius for general orbits will be
explored further in future work.

Following the attempt described in Paper I to reconstruct the ini-
tial mass of the clusters, we propose an evolutionary model based
on small N-body simulations. In this case, the scenario is compli-
cated by the non-trivial relation between the orbit of a cluster in
the bulge and its mass-loss rate and dissolution time. However, we
have found a scale relation connecting the dissolution times of clus-
ters with different initial masses and following the same Galactic
orbit. We have found this relation to be valid for a wide range of
different initial masses and different Galactic orbits. The main ad-
vantage of our method is that it would be able to predict and to
reconstruct the mass-loss history of a cluster on any orbit with any
initial mass using the results of a low mass N-body simulation of
the same cluster. In fact, small N-body simulations are fast, while
direct N-body models of massive star clusters are still out of reach
in a reasonable time frame. As an application of our method, we
have presented the results for the Galactic bulge globular clusters
with known Galactic orbits, HP 1 (Ortolani et al. 2011) and NGC
6553 (Zoccali et al. 2001). Both the clusters belong to the identified
orbit Family II. According to our results, we have reconstructed
initial masses MHP1(0) ∼ 2.45 × 105 and MN6553(0) ∼ 3.39 × 105

M� and we have predicted dissolution times tdiss, HP1 ∼ 15.6 and
tdiss, N6553 ∼ 20.3 Gyr.

However, this approach is not able to predict the evolution of
other cluster parameters, such as the core radius, for which direct
modelling is still required. On the other hand, it could be useful if
the goal is to study the evolution of the mass function of a whole
globular cluster system, where the clusters describe different orbits
in different parts of the galaxy. Also, in principle the current ap-
proach can be extended to other potentials, e.g. elliptical galaxies,
so can be used to model extragalactic GC populations. It still has to
be tested to which extent the relations that we have found hold in
the more realistic case of a time-dependent evolving gravitational
potential.

One of the immediate applications of our method could be to
simulate Galactic globular clusters with known age and orbit using
small N-body simulations and predict initial mass and mass-loss
history by applying the scale relations that have been derived in this
work. As discussed above, one of the main results of an extensive
study of clusters located in the Galactic bulge based on the method
proposed in the present work could be an estimate of the age of
the Galactic bar. Furthermore, we can simulate clusters with the
same metallicities as those observed, producing a more realistic
evolutionary model.

As already noted, another strong limitation of the present ap-
proach is that the gravitational potential is still described in terms
of static potentials. In our model the bar rotates as a rigid body with
a certain pattern speed, but the mass and structure of the different
Galactic components is set at the start of the simulation and does
not evolve in time. Renaud & Gieles (2015a) proposed a method
to simulate the dynamics of collisional systems in arbitrary, time-
evolving potentials. More flexible approaches such as this would
allow us to couple NBODY6 with an N-body simulation of galaxies
located, in principle, anywhere along the Hubble sequence. In our

future work, we aim to extend our analysis to this more general
case, which would allow us, for example, to study the effect of an
evolving short-lived bar.
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APPENDIX A : IMPLEMENTING A BAR IN
NBODY6

The equations of motion (EoMs) of a particle moving within a
certain mass distribution can be expressed in terms of the partial
derivatives of the gravitational potential

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẍ = −∂�
∂x

ÿ = −∂�
∂y

z̈ = −∂�
∂z

. (A1)

Explicitly, the EoMs of a particle moving within the gravitational
potential generated by the model of the Galactic bar that we intro-
duced in Section 2.1 are (Pfenniger 1984)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍ = −2Cx[W100 − 2y2W110 − 2z2W101 − 2x2W200

+ 2y2z2W111 + 2x2y2W210 + 2x2z2W201 + y4W120

+ z4W102 + x4W300] = −2Cxf1(x, y, z)

ÿ = −2Cy[W010 − 2x2W110 − 2z2W011 − 2y2W020

+ 2x2z2W111 + x4W210 + 2y2z2W021 + 2x2y2W120

+ z4W012 + y4W030] = −2Cyf2(x, y, z)

z̈ = −2Cz[W001 − 2x2W101 − 2y2W011 − 2z2W002

+ 2x2y2W111 + x4W201 + y4W021 + 2y2z2W012

+ 2x2z2W102 + z4W003] = −2Czf3(x, y, z)

. (A2)

The coefficients Wijk are functions of the incomplete elliptic in-
tegrals of the first and second kind. The integration of the EoMs
of the stars in NBODY6 is performed using the Hermite integration
scheme, which requires the explicit form of the first time deriva-
tive of the forces (jerk). As a first approximation, when computing
the jerk we set to zero the first time derivative of the coefficients.
The main justification for this is that the size of a typical globular
cluster is 3 orders of magnitude smaller than the radius of its orbit
and that the typical time-scale of the dynamical evolution of the
members within the cluster (e.g. the crossing time) is typically 1
order of magnitude smaller than the orbital period. This allows us to
neglect the variation of the coefficients defining the potential when
integrating the EoMs of the cluster members. The explicit first time

Figure A1. Comparison between the evolution of the Galactocentric dis-
tance of a test star cluster predicted by NIGO and by NBODY6+BAR. The
Galactic mass model and the initial conditions of the clusters are the same
in both cases.

derivative of the EoMs is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ḟx = −2C{ẋf1(x, y, z) + x[−4yẏW110 − 4zżW101

−4xẋW200 + 4(yẏz2 + y2zż)W111 + 4(xẋy2

+ x2yẏ)W210 + 4(xẋz2 + x2zż)W201

+ 4y3ẏW120 + 4z3żW102 + 4x3ẋW300]}

Ḟy = −2C{ẏf2(x, y, z) + y[−4xẋW111 − 4zżW011

−4yẏW020 + 4(xẋz2 + x2zż)W111 + 4(yẏz2

+ y2zż)W021 + 4(xẋy2 + x2yẏ)W120

+ 4z3żW012 + 4y3ẏW030]}

Ḟz = −2C{żf3(x, y, z) + z[−4xẋW101 − 4yẏW011

− 4zżW002 + 4(xẋy2 + x2yẏ)W111 + 4x3ẋW201

+ 4y3ẏW021 + 4(yẏz2 + y2zż)W012 + 4(xẋz2

+ x2zż)W102 + 4z3żW003]}

. (A3)

In order to test the reliability of this method, we compared the or-
bital evolution of a test bulge star cluster predicted by NBODY6+BAR

and the trajectory computed with NIGO, assuming the same gravita-
tional potential and initial conditions. We recall that the integration
of the EoMs in NIGO is performed with the Shampine–Gordon inte-
gration scheme. We are then comparing results from two completely
independent methods. Fig. A1 shows the results of this analysis.
We note that the evolution of the galactocentric distance of the star
cluster is consistent and we can conclude that the approximation of
constant Wijk coefficients is valid and NBODY6+BAR can predict orbits
in a barred potential to a good approximation.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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